January 29, 2018

Sol 1950-1951: North by northeast

Written by Abigail Fraeman, Planetary Geologist at NASA's Jet Propulsion Laboratory
Sol 1950-1951: North by northeast

We are back on Vera Rubin Ridge today after a short diversion into the phyllosilicate unit. Our workspace this morning contained rocks in various shades of red. The remote sensing and contact science observations we planned today are designed to investigate the chemistry, spectral properties, and fine scale textures associated with these color changes.

We chose one contact science target, "Balmedie," that we will brush and observe with MAHLI and APXS. This rock was one of the only rocks in the workspace that was big enough to safely brush, and the observations we take will provide information about the properties of the bedrock in the area. We will also take a Mastcam multispectral observation of Balmedie and its surroundings. After the contact science block, we will collect ChemCam observations of bedrock targets that have different colors, "Killiecrankie" and "Bennachie," and an RMI mosaic of a distant target on Mt. Sharp named "Muchalls." Mastcam will document the two ChemCam laser targets, and we will also take a 7x2 stereo mosaic of a distant target "Harris Bay," which is a potential geologic contact. The first sol of the plan will end with a drive to the northeast. We will take a ChemCam automatically targeted AEGIS observation on the second sol of the plan, and some ChemCam calibration targets and a dust devil search.

In addition to the ongoing operations, this week is a particularly exciting because all of the Curiosity science team members are traveling to Pasadena for our bi-annual meeting. We will converse about the latest data and share our interpretations with one another. Team members are located all across the world, so it's wonderful to be able to meet face to face to discuss all of our recent results!

January 24, 2018

Sol 1945-46: Heading back to the main road

Written by Scott Guzewich, Atmospheric Scientist at NASA's Goddard Space Flight Center
Sol 1945-46: Heading back to the main road

Curiosity diverted from our primary "Mount Sharp Ascent Route" a couple weeks ago as we continued to investigate the outcrops of bluish-toned rock that are scattered around this region of the Vera Rubin Ridge. Our most recent drive put us near the edge of the Vera Rubin Ridge, overlooking the "clay unit" (the upper portion of this image) that Curiosity will eventually reach, but not yet! We still have work to do in the hematite-rich Vera Rubin Ridge and so we must return to our original path eastward along the ridge and will begin that with a drive on the second sol of today's plan.

But before we depart, Curiosity will finish investigating the science goal of this location: studying a transition in rock tones between more gray-blue tones and those familiar martian orange-reds. This involves contact science on one of the redder-toned rocks, "Loch Gairloch", with APXS and MAHLI and then a series of ChemCam LIBS rasters on a suite of both bluish and reddish rocks in the rover's workspace ("Callander", "Moidart", and "Kirkcolm") and some Mastcam images of those nearby targets as well as some more distant features ("Eriskay", "Glen Tilt", and "Broadford") along our future drive path.

January 23, 2018

Sol 1943: From the South Rim of Vera Rubin Ridge

Written by Roger Wiens, Geochemist at Los Alamos National Laboratory
Sol 1943: From the South Rim of Vera Rubin Ridge

Curiosity Self-Portrait at 'Murray Buttes'
This September 2016 self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Quela" drilling location in the scenic "Murray Buttes" area on lower Mount Sharp. The panorama was stitched together from multiple images taken by the MAHLI camera at the end of the rover's arm.
Having spent 1943 sols on the surface of Mars, Curiosity is in its 6th Earth year on Mars, but it is in its 3rd Mars year of exploration. That means Curiosity has encountered this season of the year twice before. Today happens to be calendar Sol 255 of Mars year 34. We're just a little past the deepest part of winter in the southern hemisphere, where Curiosity roams. On this day in history in Mars year 32 (which happened to be 19-April-2014 on Earth), Curiosity was just arriving at the Kimberley site, where she found manganese-oxide fracture fills and sanidine-rich sediments. And on this day one Mars year ago (6-March-2016), Curiosity was climbing onto the Naukluft Plateau, starting to round the corner after its first encounter with the Bagnold Dunes, and prior to encountering the Murray Buttes. What a journey it has been for this intrepid rover!

Over the weekend Curiosity completed a drive that took her to the very southern edge of Vera Rubin Ridge (VRR), so we have downhill slopes directly in front of and around the side of the rover, though we plan to continue exploring the ridge for a while. The rover team is using the images gleaned over the weekend (like the one shown here) to look for potential geological relationships between VRR and the clay unit that lies south of it.

In today's plan the rover will take its first selfie since Sol 1466 (at the Quela drill site, September, 2016, with the Murray Buttes in the scene; see accompanying link), and will also take a close-up of the RWEB window that ChemCam looks out of, as a check for dust. (So far the window has been very clean throughout the mission; this is just another routine check.) ChemCam will do a 5x1 raster on "Foyers" and a 10x1 raster on "Eaval," and Mastcam will image these targets too. APXS will take advantage of the dust removed from "Eaval" by ChemCam's laser, and will do an overnight observation on that target, which will also be imaged by MAHLI. We will get DAN passive data and also RAD and REMS data.

On the next sol, Mastcam will take a 12x2 mosaic of "Glen Tilt." ChemCam will take passive spectra of several calibration targets on the rover. After that, the rover will spend 13 minutes driving about 25 meters nearly straight south, taking a short dip off the ridge. The rover will finish by taking images from its new position and sending the data home.

January 22, 2018

Government Shutdown (2018)

Written by NASA

We're sorry, but we will not be posting updates to this blog during the government shutdown. Also, all public NASA activities and events are cancelled or postponed until further notice. We'll be back as soon as possible! Sorry for the inconvenience.

January 22, 2018

Government Shutdown (2018)

Written by NASA

We're sorry, but we will not be posting updates to this blog during the government shutdown. Also, all public NASA activities and events are cancelled or postponed until further notice. We'll be back as soon as possible! Sorry for the inconvenience.

January 19, 2018

Sols 1940-1942: Studying a bedrock transition

Written by Ken Herkenhoff, Planetary Geologist at USGS Astrogeology Science Center
Sols 1940-1942: Studying a bedrock transition

The Sol 1939 drive went well, placing MSL next to the bright/dark transition seen at the right side of this image. In order to better understand the textural and chemical changes across this transition, the tactical team planned ChemCam and Right Mastcam observations of targets "Mallaig" and "Criffel" on either side of it. Mastcam will also acquire multispectral mosaics of the transition and of the material toward the south that shows evidence for clays in orbital data, smaller mosaics of nearby bedrock target "Fetlar" and the more distant "Hallival" target, and images of the Sun and the crater rim to measure the amount of dust in the atmosphere. But that's just the beginning! Later on Sol 1940 the arm will be deployed to acquire full suites of MAHLI images of "Knoydart," a block on the darker side of the transition, and of Mallaig. The APXS will be placed on Mallaig for a short integration, then on Knoydart for a longer, overnight integration.

The Sol 1941 plan is dominated by a SAM instrument cleaning/maintenance activity, which requires significant power. Early in planning we expected that power would constrain the number of activities that we could plan, but in the end all of the requested scientific observations made it into the plan. This made for a very satisfying day for me as SOWG Chair.

On Sol 1942, the vehicle will drive toward the southeast and acquire the usual post-drive imaging needed for Monday planning. Then Navcam will search for dust devils and clouds and MARDI will snap another image of the ground near the left front wheel during evening twilight. Finally, early on Sol 1943, Navcam will again search for clouds and Mastcam will measure dust opacity in the atmosphere. It's looking like another busy weekend for the MSL rover!

January 18, 2018

Sols 1938-1939: It's all about the details

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
Sols 1938-1939: It's all about the details

Today's two-sol plan will wrap up activities at Vera Rubin Ridge location "e." When we assessed the downlink data this morning, we were excited to see that ChemCam did a great job with some very precise pointing in the previous plan. At location "e" we have been focused on understanding small-scale features, like the tiny crystals and veins seen in the above ChemCam RMI image. Today's plan will complete the detailed work on this outcrop, and then we'll bump to a new location to assess a transition from gray to red bedrock.

I was the SOWG Chair today, and we had a fairly straightforward planning day. On the first sol, Curiosity will acquire 4 more carefully pointed ChemCam observations to assess compositional variations in bedrock, a vein, and dark nodules, along with supporting Mastcam documentation. Then we'll acquire MAHLI images of the target "Funzie," and one more MAHLI image on "Rona" to assess small textural differences in the bedrock and veins that are present here. Just for "Funzie," we'll do an overnight APXS analysis. On the second sol, we'll acquire a Mastcam multispectral mosaic of the area that we're bumping towards in order to better understand the color differences and the transition from gray to red bedrock in this area. Then Curiosity will drive ~5 m to the south to set up for contact science in the weekend plan. The plan also includes a number of environmental monitoring observations to look for clouds and variations in dust in the atmosphere. One of the Mastcam atmospheric observations is coordinated with a THEMIS observation, which is pretty cool to think about multiple spacecraft studying Mars from the ground and orbit.

January 16, 2018

Sol 1937: Taking a closer look…

Written by Rachel Kronyak, Planetary Geologist at NASA's Jet Propulsion Laboratory
Sol 1937: Taking a closer look…

Today we're continuing our science activities at the Vera Rubin Ridge (VRR) location "e." It certainly seems that "e" should stand for "exciting," as we've collected quite a rich set of observations at this location, including extensive imaging and geochemical analyses.

In today's plan, we're focusing our attention on small-scale features in the rocks in front of the rover to try and understand how they formed. We have a nice long science block in the early afternoon, during which we'll use ChemCam to assess the targets "Macleans Nose 2," "Funzie 2," and "Ullapool." The targets with "2" in their name are intended to be repeat observations of targets that we analyzed over the weekend to gather additional information. We'll then take a small Mastcam mosaic to document some of the VRR terrain further away from the rover.

Following the science block, we'll deploy the arm to take a closer look at some interesting rock features. The first is "Rona," a beautiful large white vein, seen in the image above. We'll use the MAHLI camera to take a series of high-resolution images of the vein to look at its interior, along with an APXS observation to see what the vein is made out of. Finally, we'll take additional MAHLI images of the target "Loch Maree," a patch of dark gray material.

January 15, 2018

Sols 1934-1936: Science at Location "e" of the Vera Rubin Ridge Campaign

Written by Christopher Edwards, Planetary Geologist at Northern Arizona University
Sols 1934-1936: Science at Location "e" of the Vera Rubin Ridge Campaign

What's in a name? From its rather innocuous sounding informal site name, you might not guess that location "e" would generate such excitement in the science team. The first thing the science team on shift did was decide to stay at the current location rather than drive away. This was primarily driven by the large suite of excellent science targets available in the workspace. These targets continue to help constrain the geologic story of the Vera Rubin Ridge.

Two arm targets for APXS integrations were quickly chosen by the science team and handed off to the Rover Planners for assessment ("Ross of Mull" and "Mcleans Nose"). "Ross of Mull" is a grayer bedrock area with nodular material nearby, while "Mcleans Nose" is a prominent gray toned resistant feature. ChemCam data was acquired of a suite of targets, including those that had the elongate, raised, linear features known by the team as "sticks", as well as the two APXS targets. Documentation imaging of these targets, including multispectral imaging to characterize the visible/near-infrared spectral properties of the site, will happen over the course of the plan. MAHLI imaging of the workspace will continue and is likely to produce stunning images such as this captured of the "Canna" target region from the previous sol's plan. Mars continues to provide Curiosity with some fabulous rocks for investigation!

January 11, 2018

Sol 1931-1933: Image Overload!

Written by Mark Salvatore, Planetary Geologist at University of Michigan
Sol 1931-1933: Image Overload!

Curiosity has made it to "Region e" of the Vera Rubin Ridge (VRR) campaign. This location is a slight depression with exposed fractured bedrock that appears more "blue" from orbit than the surrounding region. In addition, the orbital evidence and observations from the ground suggest that this location is similar to "Region 10" that we visited just last week, which was shown to have some pretty spectacular small-scale features that were of particular interest to many on the science team. As a result, the team was very excited to reach "Region e" and begin our scientific investigation!

During the first day of this plan, Curiosity will focus on acquiring an incredible amount of high-resolution Mast Camera (Mastcam) color images of the area immediately in front of the rover, the "mid-range" region a few meters in front of the rover, and the entirety of Mt. Sharp. This is an anomalous amount of data to collect at a given time, but we are able to do so thanks to the help of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) spacecraft, which will be helping us to downlink those images over the course of the next week. With the exception of the Mt. Sharp images, the other data are to characterize any small-scale geologic features present within "Region e," and the plan is to have these images back to Earth before Friday's planning session.

In the afternoon of the first day, we will unfurl Curiosity's arm to characterize an unfractured piece of bedrock in front of the rover named "Unst." We will use the Dust Removal Tool (DRT) to remove any surface dust, image the patch of bedrock with the Mars Hand Lens Imager (MAHLI) instrument, and then place the Alpha Particle X-Ray Spectrometer (APXS) instrument on the target for an overnight integration to derive its bulk chemistry.

On the second day of the plan, Curiosity will utilize its Chemistry & Camera (ChemCam) to remotely acquire chemistry data on two targets of interest. The first will be "Canna," a knobby piece of bedrock, and the second will be "Aberfoyle," the flattest portion of this blocky region in front of the rover. Aberfoyle will also be the target of an APXS measurement that evening. Mastcam will be used to document these targets, in addition to the automated ChemCam observation that was obtained two days earlier. The "Aberfoyle" ChemCam observation is beneficial for two reasons. First, we will be acquiring additional chemical measurements of this target that will be analyzed with APXS. Second, the laser blasts of ChemCam will help to remove any surface dust on the target, which will allow APXS to more confidently measure the bedrock composition with minimal input from the fine-grained dust. After this suite of measurements, the arm will then be moved into position to image the "Canna" target, the "Aberfoyle" target, and also a nearby layerred rock named "Funzie." After these images are acquired, the APXS instrument will be placed on "Aberfoyle" for an overnight integration.

On the final day of the plan, ChemCam will analyze the chemistry of the "Unst" target (which was analyzed by APXS on the first evening of the plan), the "Funzie" target (to determine if there are any compositional variations associated with the observed layers), and a new target named "Morar," which is a piece of bedrock that shows some unique patterns that might be due to fracturing, the presence of veins, and/or sculpting by the wind. After the ChemCam observations, we will acquire Mastcam documentation images, and then make some environmental observations with Mastcam and Navcam to hunt for dust devils and to assess the amount of dust in the air.