April 15, 2019

Sol 2379: Wrapping up at Aberlady

Written by Mariah Baker, Planetary Geologist at Center for Earth & Planetary Studies, Smithsonian National Air & Space Museum
Sol 2379: Wrapping up at Aberlady

A Mastcam image from Sol 2375 shows one potential "bump" target in the rover's vicinity.

With our time at Aberlady coming to a close, the search for our next drill target is in full swing. On Friday, the team discussed two different "bump" options that are near our current workspace and may be drillable. These targets were weighed against the option to head back toward a site we already passed or to do a small "walkabout" to scout out other promising bedrock outcrops. Ultimately, we decided to try our luck with one of the two nearby targets (one of which can be seen in the image above). However, the bump was postponed until Wednesday so that there would be enough time for the team to finish its assessment of the Aberlady workspace.

On the penultimate day of observations at Aberlady, we will focus on refining our understanding of the composition of local rocks and drilled material. ChemCam measurements of the drill hole and accompanying MAHLI images will be used to characterize a potential vein within the drilled rock. ChemCam will also target the edge of a large bedrock chunk, which appeared to get uplifted during drilling, and will take an image mosaic of a distant sulfate unit on Mount Sharp. APXS will also reshoot a pile of dumped material today, and it will shoot the tailings around the drill hole tomorrow. A short Navcam movie was also planned, which will continue the rover's regular monitoring of dust devil activity in Gale crater.

Overall, today was a fairly light planning day for the rover. Although our next drill target may be less than a meter away, the team is looking forward to wrapping up activities here at Aberlady and moving on to our next workspace!

April 13, 2019

Sols 2376-2378: Refining Composition and Mineralogy at Aberlady

Written by Vivian Sun, Planetary Geologist at NASA's Jet Propulsion Laboratory
Sols 2376-2378: Refining Composition and Mineralogy at Aberlady

We are continuing the sequence of drill activities at Aberlady. We will be collecting APXS of the dump pile with two offset observations to better understand any compositional variations, which are hinted at by the color variations observed in the drill fines (see above image). We will also be performing another CheMin integration to further refine the mineralogic analyses for Aberlady. We will also take MAHLI images of the dump pile and the drill hole. Discussions of whether we should drill again near our current workspace or drive away and drill elsewhere are still ongoing, but to cover our bases we planned an APXS and MAHLI observation of "Seil" for reconnaissance on potentially drillable bedrock.

Many of our remote sensing activities were designed to characterize the compositional variability of the bedrock in this region. We planned a series of ChemCam LIBS rasters on "Glen Water," "Ben Vane," "John O Groats," and "Kirkcaldy," as well as their corresponding Mastcam documentation images. We also planned a ChemCam target on a possible meteorite fragment called "Lumphanan." This observation is unusual because ChemCam targets are usually limited to within approximately 7 meters distance of the rover mast, as data quality decreases at longer distances. Lumphanan is more than 9 meters from the rover mast, but we decided to use this measurement as a long distance calibration activity.

Other observations in the weekend plan include a suite of atmospheric monitoring activities, including a Navcam dust devil survey. We are also taking advantage of our stationary location by continuing the change detection campaign with Mastcams of "Claymore" and MARDI observations. Lastly, we also planned a Mastcam mosaic of the sulfate unit to aid in targeting a ChemCam long-distance RMI observation of the sulfate unit.

April 12, 2019

Sol 2375: CheMin Success at Aberlady!

Written by Kristen Bennett, Planetary Geologist at USGS Astrogeology Science Center

Today we received the initial results from CheMin's analysis of the "Aberlady" drill sample, and they look great! This means that CheMin received enough sample and we do not need to deliver more material. Based on the initial questions about how much sample was obtained (see the Sol 2373 post), SAM decided to not use their resources to analyze this sample. So in today's plan we will dump the rest of the sample on the ground where we can analyze it with Curiosity's remote sensing instruments.



We are currently deciding whether we should drill at another location nearby so SAM can have a shot at analyzing this type of rock. To help with that decision, in today's plan ChemCam will target two potential drill options, "Ulva" and "Sutors." ChemCam will also target "New Lanark" to document a possible transition between two different rock types that were observed near the rover.



We are also taking advantage of being stationary next to a large sand patch by obtaining change detection observations. In today's plan Mastcam will take images of the "Claymore" target to document potential sand motion in the area. This will tell us how windy it is in this region.



Finally, today's plan includes a Mastcam 360 mosaic so we will get a spectacular view of our surroundings.

April 12, 2019

Sol 2375: CheMin Success at Aberlady!

Written by Kristen Bennett, Planetary Geologist at USGS Astrogeology Science Center

Today we received the initial results from CheMin's analysis of the "Aberlady" drill sample, and they look great! This means that CheMin received enough sample and we do not need to deliver more material. Based on the initial questions about how much sample was obtained (see the Sol 2373 post), SAM decided to not use their resources to analyze this sample. So in today's plan we will dump the rest of the sample on the ground where we can analyze it with Curiosity's remote sensing instruments.

We are currently deciding whether we should drill at another location nearby so SAM can have a shot at analyzing this type of rock. To help with that decision, in today's plan ChemCam will target two potential drill options, "Ulva" and "Sutors." ChemCam will also target "New Lanark" to document a possible transition between two different rock types that were observed near the rover.

We are also taking advantage of being stationary next to a large sand patch by obtaining change detection observations. In today's plan Mastcam will take images of the "Claymore" target to document potential sand motion in the area. This will tell us how windy it is in this region.

Finally, today's plan includes a Mastcam 360 mosaic so we will get a spectacular view of our surroundings.

April 11, 2019

Sol 2374: Taking some time for remote science

Written by Rachel Kronyak, Planetary Geologist at NASA's Jet Propulsion Laboratory
Sol 2374: Taking some time for remote science

This week's drill activities have been very power-intensive for Curiosity. So we'll spend today, Sol 2374, catching up on some remote science observations while waiting for data from yesterday's CheMin run to arrive.

We'll kick off our first science block with a Mastcam dust devil movie and a multispectral observation of a nearby potential meteorite target, "Lumphanan." Lumphanan is visible in the center of the Mastcam image above. Next, we'll use ChemCam to analyze our "Aberlady" drill hole for a second time, following up on an initial analysis on Sol 2372. After ChemCam, Mastcam will take 3 images of the "Claymore" target area. This will be the first sequence of change detection images; we'll repeat these images over the next few sols to observe how sand particles are moving around the surface.

Later in the afternoon, we'll do some more remote science observations, including ChemCam on nearby rock targets "North Berwick" and "Middle Field." We'll round out the science block with some environmental monitoring activities, including a Navcam cloud movie, Mastcam tau measurement, and a REMS observation.

April 10, 2019

Sol 2373: To sample or not to sample? That is the question.

Written by Fred Calef, Planetary Geologist at NASA's Jet Propulsion Laboratory
Sol 2373: To sample or not to sample? That is the question.

Mastcam view of the sample that was dropped off on the SAM inlet cover on the right-hand side of this image, to characterize portion size delivered by the drill. Although the cover looks quite "dirty," the difference in images taken before and after drop off reveals that only a very small portion of Aberlady material was dropped onto the inlet cover.

After looking at our exciting new drill hole, "Aberlady," a few interesting observations were made: the drilled block lifted up a centimeter or two as the drill was retracted, there might be some evidence of a horizontal calcium sulfate (i.e. gypsum) vein within the drill hole, the drill went into the rock very easily (no percussion required), and the drill tailings look clumpier than usual. Some concern was expressed by instrument engineers and scientists that this outcrop may have penetrated into a weak underlying layer, precluding enough sample to make its way up into the drill stem for later drop off to CheMin and SAM. CheMin scientists were also planning to place the sample into a shiny new Mylar cell for this new and unique geologic unit, though are concerned not enough sample will be delivered for proper characterization. So, today the rover will attempt to drop a sample portion into a previously used (and shaken clean) CheMin Mylar cell to get a better understanding of what this material is made of, if enough sample is delivered. Based on the CheMin results, we'll either continue with our typical SAM analyses or make decisions on whether to proceed in a different direction, perhaps literally. CheMin is power hungry, so we only had energy for one more observation, a Mastcam Phobos transit.

April 9, 2019

Sol 2372: Drill Success at Aberlady!

Written by Rachel Kronyak, Planetary Geologist at NASA's Jet Propulsion Laboratory
Sol 2372: Drill Success at Aberlady!

Our drill attempt at target "Aberlady" this weekend was a success! In today's plan we are continuing our investigation of Aberlady and the surrounding areas and preparing to deliver our drilled sample to our onboard instruments.

We'll kick off the Sol 2372 plan with a short science block to analyze 2 targets with ChemCam: the inside of the drill hole (Aberlady) and a nearby bedrock target "Mayar." We'll also use Navcam to conduct a dust devil observation.

The next step in our drill campaign is to determine if we collected powdered rock sample and whether it is behaving as expected. Today, we'll drop off small portions of the sample onto the workspace in front of us and on the SAM inlet cover. We'll use Mastcam to take images before and after these drop-offs; this will help us characterize our ability to deliver portions of the sample we received from Aberlady to the rover's laboratories.

April 5, 2019

Sol 2368: Let the Drilling Proceed!

Written by Mark Salvatore, Planetary Geologist at University of Michigan
Sol 2368: Let the Drilling Proceed!

Today marks the conclusion of the MSL Science Team Meeting currently taking place at Goddard Space Flight Center in Greenbelt, MD. These meetings are where scientists and engineers can come together to discuss the ongoing activities associated with the Curiosity rover. They're always productive opportunities to discuss strategies for analyzing previously collected data as well as strategies for investigating the terrain ahead of the rover.

After significant discussion among the science team as well as analysis of the compositional data that came down overnight from both the APXS and ChemCam instruments, the team has decided to proceed with drilling the Aberlady target. The additional compositional analyses confirmed that the composition of this target looks comparable to other targets within the clay-bearing unit. So, with the team coming to this consensus, today marks the planning of Day 1 of our typical drill cadence, complete with a pre-load drill test to monitor and examine the drill's performance prior to actual drilling into the target. These activities are preceded by a 1.5 hour science block, which will focus primarily on additional ChemCam compositional analyses and Mastcam color and multispectral imaging of the workspace. In the late afternoon, APXS will begin a series of two integrations that will last well into the early morning hours. However, instead of placing the sensor head on the martian surface to investigate the compositions of rocks and sediments, APXS will turn her sensor skywards to measure seasonal changes in atmospheric argon. These activities will set us up nicely to continue with the drill campaign, hopefully resulting in a full drill effort sometime this weekend.

April 5, 2019

Sol 2369-2371: This is why we came to Gale

Written by Scott Guzewich, Atmospheric Scientist at NASA's Goddard Space Flight Center
Sol 2369-2371: This is why we came to Gale

We are go for full drill! Today's plan will see Curiosity execute the final preparatory steps and then drill at our "Aberlady" bedrock target (seen here underneath the rover's arm and turret during the pre-drill APXS measurement) . This is a moment that the mission has been waiting for since Gale Crater was chosen as our landing site 8 (Earth) years ago! The clay bearing unit on the slopes of Mt. Sharp, which the rover is now parked on, is one of the primary reasons Gale Crater was selected over other competing landing sites and Curiosity's suite of instruments is tailor made to investigate what materials comprise it.

Prior to the drill activities, ChemCam and Mastcam will investigate two nearby bedrock targets and ENV has a Mastcam dust devil movie planned. After the drill, on the 3rd sol of today's plan, we'll begin investigating the drill hole and the resulting rock powder with ChemCam and Mastcam.

April 3, 2019

Sol 2367: Luck be an Aberlady

Written by Michelle Minitti, Planetary Geologist at Framework
Sol 2367: Luck be an Aberlady

Our short drive on Monday was successful, bringing two candidate drill targets into closer, clearer view. The prime candidate (image above), "Aberlady," appeared to have the same color, structure and texture as the Sol 2365 contact science target "Longannet." The MAHLI and APXS observations from Longannet, and ChemCam observation of the Sol 2365 "Tartan" target, chosen because of its resemblance to Longannet, all fell in family with the range of lithologies we have observed in the clay-bearing unit. That gave the science team confidence that Aberlady was worthy of our first drilling efforts in the clay-bearing unit. However, because it is such an important decision, the science team elected to dedicate today to triaging Aberlady's structure, texture and chemistry just to be sure. We crammed in as many science observations on Aberlady as possible before the communication pass that will bring us data before planning tomorrow. These included chemistry measurements from APXS and ChemCam, and images of texture and grain size from MAHLI. With these data in hand tomorrow morning, the team will be able to make the go/no-go decision about drilling. What will Aberlady reveal? Stay tuned!